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ABSTRACT 

For any natural  number  k, we characterize once-integrated Laplace 

t ransforms of O ( (1 + t) k ) and O(t k ) Banach-spaee-valued functions. We use 

this to give Hille-Yosida type characterizations of generators of polynomi- 

ally bounded strongly continuous semlgroups, related families of operators,  

and solutions of the  abstract  Cauchy problem. 

1. In t roduc t ion  

There has been much interest recently in vector-valued Laplace transforms. 

Although Widder's theorem, for characterizing Laplace transforms of exponen- 

tially bounded Banach-space-valued functions, is not valid in general, an "inte- 

grated version," due to Arendt ([1]; see also [10]), is (see Lemma 2.5). 
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In this paper, we give a similar characterization for once-integrated Laplace 

transforms of polynomially bounded Banach-space-valued functions (Theorem 

2.6). 

Part of the interest in vector-valued Laplace transforms arises from its 

connection with linear abstract Cauchy problems. We will restrict ourselves in 

this paper to the first-order abstract Cauchy problem 

d A(u( t ,x))  (t > 0), u(O,x) x, (ACP) -~u(t, x) = = 

although similar characterizations are possible for second-order abstract Cauchy 

problems, integrodifferential equations, etc. (see [6]). 

As a corollary of our Laplace transform result, for any k C N, we will charac- 

terize O((1 +t )  k) solutions of (ACP) (Theorem 3.6) and generators of O((1 +t) k) 

strongly continuous semigroups (Corollary 2.10), in terms of the resolvents of 

the generator, analogously to the Hille-Yosida-Phillips theorem. We similarly 

characterize densely defined generators of polynomially bounded integrated semi- 

groups and regularized semigroups in terms of the resolvent (Theorems 4.8, 4.9 

and 4.6). When the density of the domain is removed, these resolvent conditions 

are equivalent to the appropriate once-integrated family of operators {S(t)}t_>o 

being locally Lipschitz continuous, with Lipschitz .constant growing like a poly- 

nomial, that  is, 

limh__.o+l [ls(t + h) - S(t)ll _< M(1 + t) k, 

for all nonnegative t (Theorems 2.9, 4.4, 4.6 and 4.8). 

For arbitrary k E N, we give a much simpler sufficient condition, involving 

only the first power of the resolvent in the right half plane, for generating a 

O((1 + t) k) (1 - A)-2-regularized semigroup; this produces mild O((1 + t) k) 

solutions of (ACP), for all initial data x in the domain of A 2 (Theorem 4.10). 

This sufficient condition is close to a necessary condition (see Remark 4.11). 

A simple example of a strongly continuous semigroup that is polynomially 

bounded but not bounded is translation on a weighted L p space, LP(R, w(x)dx),  

(T( t ) f ) (x)  = f ( x  + t) 

for 1 < p < oo. It is not hard to see that 

IlT(t)ll v = sup - -  

(x ~ R,  t >_ 0), 

- t )  
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for any t _> 0. For w a nonnegative polynomial, [[T(t)[[ grows like a polynomial, 

as t ---+ oo. 

We also introduce, for any nonnegative integer k, maximal continuously 

embedded subspaces on which an operator generates a O((1 + t) k) strongly 

continuous semigroup (Theorem 3.6). 

Throughout this paper, X is a Banach space and A is a (possibly unbounded) 

linear operator on X, with domain ~9(A) and resolvent set p(A). We will denote 

by B ( X )  the space of all bounded linear operators from X to itself. 

2. P o l y n o m i a l l y  b o u n d e d  once - in t eg ra t ed  Laplace  t r a n s f o r m  

In this section we present our Laplace transform result (Theorem 2.6), and show 

how it immediately produces generation theorems for polynomially bounded 

strongly continuous semigroups (Corollary 2.10) and once-integrated semigroups 

(Theorem 2.9). 

Definition 2.1: Suppose W is a Banach space. We will say that  {g(s)}s>0 C_ W is 

the o n c e - i n t e g r a t e d  Laplace  t r a n s f o r m  of  G if G: [0, cx~) --* W is continuous, 

a(o) = O, and 

/? g(s) = s e -S tv ( t )  dt (s > 0). 

We call G the o n c e - i n t e g r a t e d  d e t e r m i n i n g  func t ion  of  g, and say that  g is 

a o n c e - i n t e g r a t e d  Laplace  t r ans fo rm.  

LEMMA 2.2: Suppose g: (0, ~ )  --* C and k E N U {0}. Then the following are 

equivalent. 

(a) There exists a constant MI so that g is the once-integrated Laplace 

transform of a continuous G: [0, oo) --* C such that 

- - l imh_~0+~llG(t+h)-G(t) l<Ml( l+tk) ,_  Yt>0._ 

(b) There exists a constant M2 so that g is infinitely differentiable and 

[n! (n+k)!] 
Ig('~l(s)l<U2 s--~-f+s---4~Tj, Vs>0, neNu{0}. 
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M1 may be chosen so that M1 < 2M2. 

Proo~ (a) --~ (b) is clear. For (b) --* (a), first assume that g is real valued. 

(b) implies that 

h+(s) =_ M2 + + g(s) 

is completely monotone; that is, 

( -1)nh( '~) (s )>0,  V s > 0 ,  n � 9  

By Bernstein's theorem ([22, page 156, Corollary 7]), there exist nondecreasing 

a •  such that 

h •  = e - S t  ( s  > 0), 

(,) 
= s  e -S td  M 2 ~ t + - ~ - - ~ ) - a _ ( t )  , 

for s > 0. By the uniqueness of the Laplace transform and (*), 

($$) G(t) ~ (ol+(t)-M2 (t-~- ,k-[-I ~ tk-t-a ~ 

We have shown that g is the once-integrated Laplace transform of G. By (**), 

limh__.O+hlG(t + h) - e( t ) l  < M2(1 + tk), Vt > 0. 

If g is complex-valued, with real part gl and imaginary part g2, then, for 

j = 1, 2, let Gj be the once-integrated determining function for gj. We have 

shown that 

- -  1 
limh._.o+-~lGj(t + h) - Gi(t)l < M2(1 + tk), Vt > 0. 

Define G = G1 + iG2, then g is the once-integrated Laplace transform of G and 

- -  1 

limh_~0+-~lG(t + h) - G ( t ) l  _< 2M2(1 + tk), Vt _ 0, 

as desired. | 

The same proof shows the following. 

so that  
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LEMMA 2.3: 

equivalent. 

(a) 

(b) 
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Suppose g: (0, oo) --* C and k �9 N U {0}. Then the following are 

There exists a constant M1 so that g is the once-integrated Laplace 

transform of a continuous G: [0, cx~) ~ C such that 

limh_~O+ h lG(t + h) - G(t)l _< Mlt  k, Vt >_ O. 

There exists a constant M2 so that g is infinitely differentiable and 

Ig(")(s)l < M2 (n + k)! Vs > 0, n �9 N U {0}. 
- -  8 n + k + l  ' 

M1 may be chosen so tha t  M1 _< 2M2. 

LEMMA 2.4: 

(1 + Isl) k < g . e  "181, W �9 4 ,  

( k ~ % - k + .  where K s  =- , ~ ,  

Proof: The lemma follows from the evident equality 

~a~(1 + I~l)ke -'~'~l = e -k+~.  

Let k E N. For every 0 < ~ < k, the following holds. 

LEMMA 2.5 ([1, Theorem 1.1]): Suppose W is a Banach space, M , a  > O, and 

g: (0, oc) --~ W.  Then the following are equivalent. 

(a) g is the once-integrated Laplace transform of a continuous function G 

satisfying 

limh_~O+ h IIG(t + h) - G ( t ) l  I < Me ~t (t >_ 0). 

(b) g is infinitely differentiable and for n E N U {0}, 

H (s -~)'~+lg(n)(s)][. _< M, Vs > a .  
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THEOREM 2.6: Suppose W is a Banach space, k E N and g: (0, c~) --* W.  Then 

the following are equivalent. 

(a) There exists a constant M1 so that g is the once-integrated Laplace 

transform of a continuous function G satisfying 

limh__.O+ h[[G(t + h) - G(t)[[ < M1(1 + t) k, Vt >_ O. 

(b) There exists a constant M2 so that g is infinitely differentiable and 

n! (n§  
IIg(n)(s)ll<_M2 s - - ~ y + ~ j ,  V s > 0 ,  n e N U { 0 } .  

(c) There exists a constant M1 so that g is infinitely differentiable and for 

O< a < k ,  n C N U { O } ,  

< M1 e-k+% Vs > a. 
n! - 

Proof" (b) --* (a). By Lemma 2.2, for any x* E W*, there exist continuous 

G~.: [0, e~) -* C such that s ~ <  g(s),x* > is the once-integrated Laplace 

transform of G~., and 

1 
limh~o+-~lG~.(t + h ) - G , . ( t ) l  _< 2M2Hx*ll(l +tk) ,  Vt >_O. 

By Lemma 2.5 and its proof (see [1, Theorem 1.1]), this is equivalent to the 

existence of G: [0, ~ )  --~ W such that 

a ~ . ( t ) = < G ( t ) , x * > ,  Vt >_ O, x* E W*. 

G is clearly the desired family of (a). 

(a) --* (b) is clear, since there exists/1//2 so that 

M l ( l + t )  k < M 2 ( l + t k ) ,  Vt_>0. 

(a) --* (c). From Lemma 2.4, 

(2.1) 1 limh-~O+-~[[G(t + h) - G(t)[[ <_ M1K~e ~t, V a > 0 ,  t_>0, 

where K~ is defined in Lemma 2.4. Hence (c) is true by Lemma 2.5 with M 

replaced by M1K~. 
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(c) --~ Ca). From Lemma 2.5, (c) implies (2.1). Since a and t are independent, 

we may choose a = k(1 + t) -1 in (2.1) to obtain 

1 ( k )ke_k+k(l+O-lek(l+t)-i  t 
limh--.0+ [[G(t + h) - G(t)l[ < M1 k(1 + t) -1 

= - M l ( l + t )  k, V t ~ 0 .  | 

The same proof, with Lemma 2.2 replaced by Lemma 2.3, gives us the following. 

THEOREM 2.7: Suppose W is a Banach space, g: (0, oc) -~ W and k C N. Then 

the following are equivalent. 

(a) There exists a constant M1 so that g is the once-integrated Laplace 

transform of a continuous G such that 

limh_+O+ h l[G(t + h) - G(t)l I _< Mlt  k, Vt >_ O. 

(b) There exists a constant M2 so that g is infinitely differentiable and 

( n + k ) !  V s > 0 ,  n e NU{0}.  IIg(n)(s)ll < M2 sn+k+~, 

Definition 2.8: The exponentially bounded strongly continuous family of 

operators {S(t)}t>0 is a once - in t eg ra t ed  semigroup ,  g e n e r a t e d  by A if 

S(0) = 0 and there exists real a such that (a, oo) C_ p(A) and 

( s - A ) - l x = s  e -S t s ( t ) xd t  ( x e X ,  s > a ) .  

THEOREM 2.9: The following are equivalent, i l k  C N.  

(a) There exists a constant M1 so that A generates a once-integrated 

semigroup S(t)  such that 

limb-o+ h[[S(t + h) - S(t)ll < MI(1 t) k , + 

for all t >_ O. 

(b) There exists a constant M2 so that (0, oo) C_ p(A) and for n E N,  

Ils~(s-A)-~ll __ M2 1 + ( n  . s - k  , Vs  > O. 

(c) There exists a constant M3 so that (0, oo) C_ p(A) and for 0 < a < k, 

n E N ,  

[[(s - cOn(s  - A ) - n l l  _< M3 e - k + a ,  VS > o~. 
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Proof" This is immediate from the definition of once-integrated semigroup and 

Theorem 2.6, when one notes that 

~s (s - A) -1 = (-1)nn!(s - A) -(~+1), 

for any nonnegative integer n, and s > 0. I 

COROLLARY 2.10: The following are equivalent, iflP(A) is dense, and k E N. 

(a) There exists a constant M1 so that A generates a strongly continuous 

semigroup T(t) such that 

I[T(t)ll < MI(1 + t) k, 

(b) 

(c) 

for all t >_ O. 

There exists a constant M2 so that (0, oo) C p(A) and for n E N, 

[[sn(s-A)-nH_<3//2 1 +  - (n -  , V s > 0 .  

There exists a constant M3 so that (0, oo) C_ p(A) and for 0 < a < k, 

n 6 N ,  

II(s - a ) n ( s  -- A ) - n l l  _< M3 e -k+" ,  Vs > a .  

Proof'. In [1, Corollary 4.2] it is shown that, when /~(A) is dense, then A 

generates a strongly continuous semigroup {T(t)}t>o if and only if A generates a 

locally Lipschitz continuous once-integrated semigroup {S(t)}t>0 satisfying, for 

some K, ~ > 0, 

limh--.O+ 1]lS(t + h) - S ( t ) [  I <_ Ke "t, Vt >>_ O, 

with 

s( t )x  = r ( r ) x d r  (z ~ X, t >_ 0). 

Thus (a) of this Corollary is clearly equivalent to (a) of Theorem 2.9. 
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3. M a x i m a l  subspaces  for po lynomia l ly  b o u n d e d  solut ions  of  t h e  

a b s t r a c t  C a u c h y  p rob l em 

Maximal continuously embedded subspaces where a closed operator generates a 

strongly continuous semigroup of contractions are constructed, independently, in 

[14] and [15]. 

In this section, we will use a slight modification of the construction in [5, 

Chapter V] to produce, for any nonnegative integer k, maximal continuously 

embedded subspaces where a closed operator generates a O((1 + t) k) strongly 

continuous semigroup, or a once-integrated semigroup as in Theorem 2.9(a). For 

the latter, we may give Hille-Yosida type conditions on the resolvent at a point x 

that characterize x being in the subspace; in other words, we are characterizing 

O((1 + t) k) solutions of (ACP). 

Assume throughout this section that A is closed, a C i t ,  (s - A) is injective, 

for s > a, and k and m are nonnegative integers. For k -- 0, the results of this 

section are in [5, Chapter V]. 

Definition 3.1: A mi ld  so lu t ion  of (ACP) is u such that  t H u(t ,x)  E 

C([0, oc), X) ,  Jo u(r, x) dr E ~P(A), for all t _> 0, and 

u(t ,x)  = m u(r,x) dr + x (t > O). 

A closed operator A generates a strongly continuous semigroup if and only if 

(ACP) has a unique mild solution for all x E X (see [5, Corollary 4.11] or 

[19, Theorem 3.1]). This automatically implies that A is densely defined. For 

operators A that are not densely defined, it becomes natural to consider a 

weaker definition of solution. 

Definition 3.2: A weak  mi ld  solution of (ACP) is v such that  t ~-* v(t, x) is 
t 

locally Lipschitz continuous, fo v(r, x) dr E 9(A) ,  for all t > 0, and 

v(t ,x)  = A v(r,x) dr + tx (t > O). 

We justify this terminology by noting that, when :D(A) is dense, so that  A* is 

defined, then 
d 
-~(v(t ,x) ,x*} = (v( t ,x) ,A* x*} + (x,x*) 

for x* C :D(A*), almost all t _> 0; see [3] or [19, Chapter 3], for the definition of 

a weak  so lu t ion  of (ACP). 
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Both these notions of solution, when exponentially bounded, may be equated 

with the Laplace transform. The following result, from [11], is actually stated in 

a version that does not assume (s - A) is injective. 

LEMMA 3.3 ([11, Theorem 2.1]): Suppose t ~-~ w(t) E C([0, co),X) and is 

O(e~t). Then the following are equivalent. 

(a) (s - A ) - l x  = s m f~o e_Stw(t) dt (s > a). 

(b) For a11 t >_ O, fo w(s) ds E 7)(A), with 

(/o w(t) = A w(s) ds + m--[.x. 

As an immediate consequence of [5, Lemma 2.10], we have the following. 

LEMMA 3.4: Any mild or weak mild exponentially bounded solution of  (ACP) 

is unique. 

Definition 3.5: Let Z(A,  k) be the set of all x for which (ACP) has a mild 

solution such that 

t H (1 + x) 

is uniformly continuous and bounded on [0, co). Define 

[[XI[z(A,k) -- sup(I + t)-kIlu(t, x)[[. 
t_>o 

Let Y(A ,  k) be the set of all x for which (ACP) has a weak mild solution such 

that  

esssup{(1 + t)-kld-~ < v( t ,x) ,x* > I it >_ O,x* e X*,lix*]] < 1} < co. 
a~ 

Define 

Iixllg(A,k) = ess sup { ( l + t ) - ~ i ~ < v ( t , x ) , x * > i , i < x , x * > ] } .  
t>_O,x* EX*,llx* II_<l 

Then almost exactly as in the proof of [5, Theorems 5.5 and 5.10], we have 

the following, where, for W continuously embedded in X, we write AIw for the 

restriction of A to W; that is, 73(Aiw ) - {x E W M :D(A): Ax C W}.  
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THEOREM 3.6: 

(1) Y(A, k) and Z(A, k) are Banach spaces continuously embedded in X.  

(2) Z(A, k) equals the closure, in Y(A, k), ofl:)(A[v(A,k)). 

(3) A]Z(A,k) generates a strongly continuous semigroup {T(t)}t>o, 

on Z(A, k), such that 

IIT(t)ll _< (1 + t) k, vt  ___ 0. 

(4) A[V(A,k) generates a once-integrated semigroup { S(t) }t>o such that 

1 
limh_o+-~[[S(t+ h) - S(t)[[ < ( l + t )  k, Vt _> 0. 

(5) It" k C N, then x E Y(A,k)  if and only if x E Im((s - A)n), for all 

n C N , s  > 0, and there exists M > 0 so that, for 0 < a < k, n C N, 

[l(s - a)n(s - m)-nxll < M e -k+~, Vs > a. 

(6) x e Y(A, k) if and only if there exists M > 0 such that, for all n E N, 

s > O, we have x C Im((s - A)n), with 

- ( n  ) .  s - k  , V s > 0 .  

(7) Z(A, k) is maximal unique; that is, if W is a Banach space continuously 

embedded in X such that A[w generates a strongly continuous O(( l+ t )  k) 

semigroup, then W is continuously embedded in Z(A, k). 

Proo~ The proofs of assertions (1), (3) and (7) are the same as the proofs of 

[5, Theorem 5.5(1),(2),(5) and (8)]. 

As in [5, Theorem 5.5(4)], we may show that AIy(A,k ) satisfies the resolvent 

conditions in (b) of Theorem 2.9, so that the conclusion of (4) follows from 

Theorem 2.9. 

Similarly, if W is the closure ofl)(A[v(A,k)), in Y(A, k), then because AIw sat- 

isfies the resolvent conditions in (b) of Corollary 2.10, A[w generates a 

O((1 + t) k) strongly continuous semigroup. By (7), W is continuously 

embedded in Z(A,k).  But Z(A,k) C Y(A,k) ,  and by (3), the domain of 

I)(A]z(A,k)) C_ lg(AIy(A,k)) is dense in Z(A,k),  so Z(A,k) C_ W. This gives 

us (2). 
Assertions (5) and (6) follow from Lemma 3.3 and Theorem 2.6, as in the proof 

of [5, Theorem 5.10]. | 



200 R. DELAUBENFELS, Z. HUANG, S. WANG AND Y. WANG Isr. J. Math. 

4. P o l y n o m i a l l y  b o u n d e d  e x i s t e n c e  famil ies  a n d  i n t e g r a t e d  e x i s t e n c e  

famil ies  

When solutions of (ACP) exist for some, but not all, initial data, an alternative 

to going to a continuously embedded subspace, as in the previous section, is to 

construct bounded operators on the original space that  produce the solutions (see 

[5]). In this section, for k a nonnegative integer, we discuss when such families 

of operators exist and are O((1 + t)k). 

Throughout this section, C E B ( X ) .  

Definition 4.1: [5, 17]. Suppose m C NU{0} and A is closable. The strongly con- 

tinuous family of bounded operators {S(t)}t>o is a mi ld  m - t i m e s  

i n t e g r a t e d  C - e x i s t e n c e  f ami ly  for  A if, for all x E X ,  t > O, fo S ( s )x  ds E 

:D(A), and 

A s ( s ) x  es  = s ( t ) x  -  cx. 

If m = 0, we simply call {S(t)}t>_o a mild C-existence family for A ([5]). 

If C = I,  then {S(t)}t>_o is an m-times integrated semigroup for A. In this 

case, .4 is unique, and is called the g e n e r a t o r  of {S(t)}t>_o. 

Definition 4.2: The complex number s is in pc(A) ,  the C - r e g u l a r i z e d  

r e s o l v e n t  of A, if (s - A) is injective and Im(C) C_ Im(s - A). 

As a consequence of Lemma 3.3, we have the following. 

PROPOSITION 4.3: Suppose m E NU{0},  a > O, A is closed, ( s - A )  is injective, 

for s > a and {S(t)}t_>o is a O(e ~t) strongly continuous family of  bounded 

operators. Then the following are equivalent. 

(a) {S(t)}t_>o is a mild m-times integrated C-existence family for A. 

(b) (a,c~) C_ pc(A)  and 

/? _ A ) - I C x  = e- ts(t) et 

for a11 x E X,  s > a. 

THEOREM 4.4: Suppose A is dosed, k E N, and ( s - A )  is injective, for all s > O. 

Then the following are equivalent. 

(a) There exists a mild once-integrated C-existence family { S(t)  }t>_o for A 

such that, for some constant M1, 

- -  1 
limh--.0+ ~llS(t + h) - s(t)ll _< Ms(1 + t) k Vt _> 0. 
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(b) There exists a constant M2 so that Im(C) C_ Im((s - A)n), for a11 s > O, 

n E N, with 

I r sn ( s -A) -nc I l_<M2 1 +  ~ _ -  , V s > 0 .  

(c) There exists a constant Ma so that Ira(C) C_ Im((s - A)~), for ali n E N, 

s > 0, and/ 'or 0 < c~ < k, n E N, 

II(s  - ~ ) n ( s  - A ) - n C l l  < M3 e - k + ~ ,  Vs > c~. 

Proof: (c) --* (a). By [5, Lemma 5.23], s ~-* (s - A ) - IC ,  from (0, oo) --~ B(X) ,  

is differentiable, with 

(*) dss ((s - A ) - I c )  = (-1)nn!(s - A) -(n+l), 

for all nonnegative integers n. Theorem 2.6 and Proposition 4.3 now give us (a). 

(a) --* (c). By Theorem 2.6 and Proposition 4.3, s ~ (s - A ) - I c ,  from 

(0, oo) ~ B (X) ,  is infinitely differentiable, and 

I I ( s - a ) n + l ( d ) n ( ( s - A ) - l C ) l l <  Mn! (k )ke  -k+~, Vs >a, nENU{O}. 

An induction argument shows that Im(C) C_ Im((s - A) n) and (*) holds, for any 

nonnegative integer n. This gives us (c). 

The equivalence of (a) and (b) is shown identically. I 

Definition 4.5: [16], [17] and [21]. Suppose m E N. The strongly continuous 

family of operators {S(t)}t>o C B ( X )  is an m-times integrated C-regularized 

semigroup if C is injective, S(0) = 0 and 

S(t)S(s)x  = [~t+S - ~ot] (t + s -  r ) m - l S ( r ) C x d r  , 

for all x E X, s, t > 0. 

The strongly continuous family {W(t)}t>o C_ B ( X )  is a C- regu la r ized  semi- 

g roup  if W(t )W(s )  = C W ( t  + s), for all s, t _> 0, and W(0) = C is injective. A 

0-times integrated C-regularized semigroup will be a C-regularized semigroup. 

For m E N U {0}, A closable, we will say that the m-times integrated C- 

regularized semigroup is an m-times integrated C-regularized semigroup for A 
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if S(t)A C_ AS(t), for all t _> 0, and {S(t)}t>0 is a mild m-times integrated C- 

existence family for A (in [17], A is called a s u b g e n e r a t o r  of {S(t)}t>o). We 

will also say that  A has an m-times integrated C-regularized semigroup or has 

the m-times integrated C-regularized semigroup. 

For C r I, even when m = 0, A is not unique, even if we insist that  A be 

closed; that is, given a C-regularized semigroup {W(t)}t>o, there may be more 

than one closed operator A for which {W(t)}t>o is a C-regularized semigroup 

(see [7, Counterexample 0.2]). 

The operator A g e n e r a t e s  a C-regularized semigroup {W(t)}t>o if 

Ax = C-l [liml (w(t)x-Cx)] 
Lt-,o t 

with maximal domain. The generator is the maximal A such that {W(t)}t>0 is 

a C-regularized semigroup for A. 

THEOREM 4.6: Suppose A is closed, C is injective, and k E N. Then the [ollow- 

ing are equivalent. 

(a) There exists a once-integrated C-regularized semigroup {S(t) }t>o for A 

such that, for some constant M1, 

FT-~h--,o+llls(t+h) - s ( t ) l l  _< M l ( l + t )  k Vt _> O. 

(b) CA C AC, (0, oo) C_ pc(A), and there exists a constant M2 so that 

Im(C) C_ Im((s - A)n), for all s > O, n e N, with 

[ (n + k- ~)'s-k I V s > 0 .  l isa(s- A)-'~CI] < M2 1 + "(n Z~) 

(c) CA C_ dC, (0, oc) C_ pc(A), Im(C) C_ Im((s - A)n), for all n E N, s > 0 

and there exists a constant M3 so that t'or 0 < a < k, n E N, 

k 

,,(8-c~)n(s- A)-nc,I <_M3 ( k )  e -k+a, V8 > c~. 

If  IP(A) is dense, then these are equivalent to the following. 

(d) There exists a C-regularized semigroup {W(t) }t>o for A such that, for 

some constant M1, 

IIW(t)ll M1(1 + t) k Vt _> O. 
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Proof: (a) ~ (b). By [17, Lemma 5.2], CA C_ AC and (s - A) is injective, for 

all s > 0. Thus (b) follows from Theorem 4.4. 

(b) ~ (a). Let {S(t)}t>_o be as in (a) of Theorem 4.4. Since CA C AC, 

it follows from Proposition 4.3 and [16] or [17, Lemma 4.1] that {S(t)}t>o is a 

once-integrated C-regularized semigroup for A. 
The equivalence of (a) and (c) follows identically. 

When :D(A) is dense, the equivalence of (a) and (d) follows from [21, Lemma 

5.1], and its proof. | 

Remarks 4.7: When p(A) is nonempty, then whenever {S(t)}t>o is a once- 
integrated C-regularized semigroup for A, it is not hard to show that, for any 

s e p(A), 

Ws(t) - ~ S ( t ) ( s -  A) -1 (t >_ O) 

is an (s - A)-lC-regularized semigroup for A. 
The obvious analogue of Theorem 4.6, for groups, is also true; replace 

"semigroup" by "group", "t nonnegative" by "t real," and "s > 0 (a)" by 

"Is[ > 0 (a)," in Theorem 4.6. 

THEOREM 4.8: Suppose k E N and m is a nonnegative integer. Then the 

following are equivalent. 

(a) There exists a constant MI so that A is the generator d a n  (m + 1)-times 

integrated semigroup { S(t) }t>_o satisfying 

l imh .~o+~ l [ I s ( t+h )_S( t ) [ [_<Ml( l+ t )  k, Vt_>0. 

(b) There exists a constant M2 so that (0, cxD) C p(A) and for n E N V {0}, 

[ ](n) In! ( n +  k)!] (s -=A)-lsm _< Ms 7;  + J , Vs > 0. 

(c) There exists a constant M3 so that (0, c~) C_ p(A) and for 0 < a < k, 

n e  NU{0} ,  

- M 3 ( k ) k e - k + a n , ,  Vs 

If  D(A) is dense, then these are equivalent to the following. 
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(d) There exists a constant M1 so that A is the generator of an m-times 

integrated semigroup {W(t)  }t>o such that 

IlW(t)ll _< M~(1 + t) ", Vt _> O. 

Proof'. The equivalence of (a), (b) and (c) is immediate from Theorem 2.6. 

When 7)(A) is dense, the equivalence of (a) and (d) follows from [1, Corollary 

4.2]. | 

In the following, we give equivalent conditions for being the generator of a 

particularly desirable class of integrated semigroups, that appear often in prac- 

tice, k-times integrated semigroups that are O(tk); see [2], [8], [12] and [13], for 

example. 

THEOREM 4.9: Suppose k E N. Then the following are equivalent. 

(a) There exists a constant M1 so that A is the generator of a (k + 1)-times 

integrated semigroup { S ( t ) } t>_o satisfying 

limh_.o+ h i[S(t + h ) - S(t)[[ _< Mlt  k, Vt >_ O. 

(b) There exists a constant M2 so that (0, oo) c p(A) and for n E N U {0}, 

[(s - A ) - I ]  (~) (n+k) !  V s > 0 .  
-su "j <_ M2 Sn+k+l , 

If~D(A) is dense, then these are equivalent to the following. 

(c) There exists a constant M1 so that A is the generator of a k-times 

integrated semigroup {W(t)  }t>o such that 

IIW(t)tl _< Mlt  k, Vt >_ O. 

We conclude with a simple sufficient condition for A generating a (1 - A) -2- 

regularized semigroup that is 0((1 -t- t)k). 

THEOREM 4.10: Suppose the open right half plane {z e C: Re(z) > 0} C_ p(A), 

k E N,  and there exists a constant M such that 

]](z - A)-II] < M(Re(z)  -1 + Re(z)-k),  
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whenever Re(z)  > 0. Then A generates a norm continuous (1 - A)-2-regularized 
semigroup that is O((1 + t)k). 

Proof'. Define, for e > 0, 

[ ~ + i ~  (t > 0). 
dz 

W(t) ==- ~ ~-i~ eZt(z - A)-I  27ri(1 - 2) 2 - 

By a calculus of residues argument,  W(t) is independent  of e > 0. Dominated  

convergence implies tha t  t ~ W(t), from [0, oc) into B(X),  is continuous. 

This construct ion is a special case of the functional calculus construct ion 

in [5, Chapter  XXII]; the functional calculus properties in [5, Corollary 22.12] 

imply tha t  W(0)  = (1 - A) -2 and W(t)W(s) = W(s + t)(1 - A) -2,  for any 

s, t > 0; tha t  is, {W(t)}t>_o is a (1 - A)-2-regularized semigroup. By [5, Theo- 

rem 22.10(e)], A is the generator  of {W(t)}t>_o. 

We will now verify the growth condition. 

F o r 0 < e <  1, 

JR dy _Meet(e_l+e_k)~_Me~te_k.  [[W(t)[[ <_ M eEt(e-1 + e-k) 27r(1 + [y[)2 

For t > 1, let e -= l / t ,  to conclude that  

IIW(t)l[ <_ (Me)t k, Vt > 1. 

This implies tha t  IIW(t)ll is O((1 + t)k). | 

Remarks 4.11: Note tha t  Theorem 4.10 is guaranteeing mild O ( ( l + t )  k) solutions 

of (ACP),  for all initial da ta  x E :D(A2). 

If A generates a (1 - A)-2-regularized semigroup tha t  is O((1 + t)k), then, by 

Proposi t ion 4.3, there exists a constant  M so tha t  

[l(z - A ) - I ( 1  - A)-2[[ _< M(Re(z )  -1 + Re(z) - (k+l) ) ,  

whenever Re(z)  > 0. 

Thus  the sufficient condition of Theorem 4.10 is "close" to a necessary 

condition. 

If {[[s(s - A)-I[[:  s > 0} were bounded,  so tha t  we could define fractional 

powers in the usual way (see [9] or [18]), then under the hypotheses of Theorem 

4.10, we could define, with a little more work, as in [4, Section IV], for any r > 0, 



206 R. DELAUBENFELS, Z. HUANG, S. WANG AND Y. WANG Isr. J. Math. 

a (1 - A)-(l+r)-regularized semigroup generated by A that  is O((1 + t)k); this 

produces mild solutions of (ACP) for any initial data  x E :D(AI+r). 

A sufficient condition similar to that  of Theorem 4.10, for generating a certain 

class of m-t imes integrated semigroups that  includes those in Theorem 4.9, may 

be found in [20]. 
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